53 research outputs found

    GenText: Unsupervised Artistic Text Generation via Decoupled Font and Texture Manipulation

    Full text link
    Automatic artistic text generation is an emerging topic which receives increasing attention due to its wide applications. The artistic text can be divided into three components, content, font, and texture, respectively. Existing artistic text generation models usually focus on manipulating one aspect of the above components, which is a sub-optimal solution for controllable general artistic text generation. To remedy this issue, we propose a novel approach, namely GenText, to achieve general artistic text style transfer by separably migrating the font and texture styles from the different source images to the target images in an unsupervised manner. Specifically, our current work incorporates three different stages, stylization, destylization, and font transfer, respectively, into a unified platform with a single powerful encoder network and two separate style generator networks, one for font transfer, the other for stylization and destylization. The destylization stage first extracts the font style of the font reference image, then the font transfer stage generates the target content with the desired font style. Finally, the stylization stage renders the resulted font image with respect to the texture style in the reference image. Moreover, considering the difficult data acquisition of paired artistic text images, our model is designed under the unsupervised setting, where all stages can be effectively optimized from unpaired data. Qualitative and quantitative results are performed on artistic text benchmarks, which demonstrate the superior performance of our proposed model. The code with models will become publicly available in the future

    EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes

    Full text link
    Visual Emotion Analysis (VEA) aims at predicting people's emotional responses to visual stimuli. This is a promising, yet challenging, task in affective computing, which has drawn increasing attention in recent years. Most of the existing work in this area focuses on feature design, while little attention has been paid to dataset construction. In this work, we introduce EmoSet, the first large-scale visual emotion dataset annotated with rich attributes, which is superior to existing datasets in four aspects: scale, annotation richness, diversity, and data balance. EmoSet comprises 3.3 million images in total, with 118,102 of these images carefully labeled by human annotators, making it five times larger than the largest existing dataset. EmoSet includes images from social networks, as well as artistic images, and it is well balanced between different emotion categories. Motivated by psychological studies, in addition to emotion category, each image is also annotated with a set of describable emotion attributes: brightness, colorfulness, scene type, object class, facial expression, and human action, which can help understand visual emotions in a precise and interpretable way. The relevance of these emotion attributes is validated by analyzing the correlations between them and visual emotion, as well as by designing an attribute module to help visual emotion recognition. We believe EmoSet will bring some key insights and encourage further research in visual emotion analysis and understanding. Project page: https://vcc.tech/EmoSet.Comment: Accepted to ICCV2023, similar to the final versio

    Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α.

    Get PDF
    Spatiotemporal regulation of tumor immunity remains largely unexplored. Here we identify a vascular niche that controls alternative macrophage activation in glioblastoma (GBM). We show that tumor-promoting macrophages are spatially proximate to GBM-associated endothelial cells (ECs), permissive for angiocrine-induced macrophage polarization. We identify ECs as one of the major sources for interleukin-6 (IL-6) expression in GBM microenvironment. Furthermore, we reveal that colony-stimulating factor-1 and angiocrine IL-6 induce robust arginase-1 expression and macrophage alternative activation, mediated through peroxisome proliferator-activated receptor-γ-dependent transcriptional activation of hypoxia-inducible factor-2α. Finally, utilizing a genetic murine GBM model, we show that EC-specific knockout of IL-6 inhibits macrophage alternative activation and improves survival in the GBM-bearing mice. These findings illustrate a vascular niche-dependent mechanism for alternative macrophage activation and cancer progression, and suggest that targeting endothelial IL-6 may offer a selective and efficient therapeutic strategy for GBM, and possibly other solid malignant tumors

    Improvement of the separation evolution law and separation position determination method of mining overburden strata

    Get PDF
    In view of the shortcomings of the traditional method of determining the position of the separation layer, according to the actual movement of the pressure balance arch and the rock layer in the overburden, the concept of the triangular separation domain is proposed, and the relationship between the range of the triangular separation domain and the mining distance and the mining fracture angle is established. The calculation method of rock load is modified. By analyzing the stress mode in the pressure arch of the separation zone, the mechanical model of the deflection calculation of each rock stratum is established. Combining the triangular separation zone with the new mechanical model, the calculation model of the dynamic evolution analysis of the separation zone and the calculation model of the composite beam in the separation zone are established. The traditional method and the improved method are used to determine the separation position in an actual mining example. The field exploration proves that the results of the improved method described in this paper are more accurate. The model predicts the position of overburden separation by comparing the deflection between adjacent strata on the same horizontal contact surface, and can accurately predict the position of separation above the working face

    Design and analysis of optical packet switching systems with multicast capability

    No full text
    Optical fiber communication has developed so rapidly during the last decades that it has become the backbone of today’s communication systems. To take advantage of the huge bandwidth of optical fiber links, optical packet switching systems have been proposed and investigated intensively. However, most of the existing optical packet switches cannot effectively support multicast applications. To address this problem, this thesis is performed with objectives of design and analysis of optical packet switching systems with multicast capability. A wavelength-routed multicast packet switch utilizing multicast modules is proposed and investigated. By means of the multicast modules, the switch allows copies of a multicast packet to be made in multiple timeslots to reduce packet contention and then to be switched to desired outputs. Furthermore, a packet scheduling technique is designed for contention resolution for the proposed switch. Performance evaluation is carried out to study the feasibility of the multicast switch. It is shown that the switch can achieve a low multicast packet loss probability with a few multicast modules. Furthermore, to enhance the multicast performance, an improved scheme is then presented by modifying the multicast modules in the switch. Investigation on traffic performance shows that the improved scheme can considerably reduce packet loss probability for the switch without adding more multicast modules. Nevertheless, it can only handle a small proportion of multicast traffic. To overcome the performance deterioration caused by a large volume of multicast traffic, a novel wavelength-routed multicast packet switch with a shared fiber delay lines (FDLs) buffer is then proposed. This switch allows both unicast and multicast packets to share a set of FDLs for buffering, and more importantly, a multicast packet can be replicated in multiple timeslots by multi-wavelength conversion in conjunction with the shared FDLs buffer. Traffic performance evaluation and complexity discussion show that the proposed switch can not only effectively reduce the performance deterioration caused by the increase of multicast traffic, but also exhibit much simpler configuration than other proposals for optical packet multicasting. A multi-wavelength broadcast-and-select packet switch and its multicast traffic performance are comprehensively investigated. The switch enables to concurrently transmit multiple optical packets to the same output fiber of the switch and employs a multi-timeslot replication scheme to reduce the multicast packet contention. An analytical model of the switch is developed for traffic performance investigation and then verified by simulation. Results show that with the multi-timeslot replication, the switch can achieve a much better traffic performance, which is unaffected by the multicast traffic ratio. Scalability analysis shows that the switch with more wavelengths per fiber can achieve a given packet loss probability at a lower power loss. Furthermore, an improved scheme is presented for reducing the number of amplifiers required by the switch for compensating the power loss.DOCTOR OF PHILOSOPHY (EEE

    A Novel Implementation of Hardware Based Hybrid Embedded RTOS

    No full text
    Reliable embedded systems play an increasing role i\ud n modern life, especially in modern \ud automotive designs. Many studies have proved that i\ud t performs better in many situations. \ud Firstly, reliable embedded systems provide the syst\ud em reliability improvements. Secondly, \ud reliable embedded systems also can improve the deve\ud lopment efficiency and make the \ud development cycle shorter. \ud However, in the high real-time required occasion, t\ud he software implementation of the RTOS \ud can`t fully meet requirements. To have better real-\ud time only through the algorithm improvement \ud or just increase the processor speed. On the contra\ud ry, operating system based on a hardware \ud implementation can make it more real-time and more \ud reliable. The reason is due to that the \ud hardware circuit is independent of the processor ru\ud nning and do not take up the processing time \ud of the processor. Thereby it can save time to execu\ud te other tasks and improve real-time. In this \ud paper, ARM+FPGA will be choose as the IP hardware d\ud evelopment platform

    Energy Efficient Intelligent Reflecting Surface Assisted Terahertz Communications

    No full text
    • …
    corecore